LENZE伺服电机MCS 12L39-RSOBO
同整流器相反,逆变器是将直流功率变换为所要求频率的交流功率,以所确定的时间使6个开关器件导通、关断就可以得到3相交流输出。以电压型pwm逆变器为例示出开关时间和电压波形。 控制电路是给异步电动机供电(电压、频率可调)的主电路提供控制信号的回路,它有频率、电压的“运算电路”,主电路的“电压、电流检测电路”,电动机的“速度检测电路”,将运算电路的控制信号进行放大的“驱动电路”,以及逆变器和电动机的“保护电路”组成。(1)运算电路:将外部的速度、转矩等指令同检测电路的电流、电压信号进行比较运算,决定逆变器的输出电压、频率。
目前主流的伺服驱动器均采用数字信号处理器(DSP)作为控制核心,可以实现比较复杂的控制算法,实现数字化、网络化和智能化。功率器件普遍采用以智能功率模块(IPM)为核心设计的驱动电路,IPM内部集成了驱动电路,同时具有过电压、过电流、过热、欠压等故障检测保护电路,在主回路中还加入软启动电路,以减小启动过程对驱动器的冲击。功率驱动单元首先通过三相全桥整流电路对输入的三相电或者市电进行整流,得到相应的直流电。经过整流好的三相电或市电,再通过三相正弦PWM电压型逆变器变频来驱动三相永磁式同步交流伺服电机。功率驱动单元的整个过程可以简单的说就是AC-DC-AC的过程。整流单元(AC-DC)主要的拓扑电路是三相全桥不控整流电路。
直流电动机是依靠直流工作电压运行的电动机,广泛应用于收录机、录像机、影碟机、电动剃须刀、电吹风、电子表、玩具等。电磁式编辑电磁式直流电动机由定子磁极、转子(电枢)、换向器(俗称整流子)、电刷、机壳、轴承等构成,
自从德国MANNESMANN的Rexroth公司的Indramat分部在1978年汉诺威贸易博览会上正式推出MAC永磁交流伺服电动机和驱动系统,这标志着此种新一代交流伺服技术已进入实用化阶段。到20世纪80年代中后期,各公司都已有完整的系列产品。整个伺服装置市场都转向了交流系统。早期的模拟系统在诸如零漂、抗干扰、可靠性、精度和柔性等方面存在不足,尚不能完全满足运动控制的要求,近年来随着微处理器、新型数字信号处理器(DSP)的应用,出现了数字控制系统,控制部分可完全由软件进行,分别称为直流伺服系统、三相永磁交流伺服系统。
所谓V型发动机,简单的说就是将所有汽缸分成两组,把相邻汽缸以一定夹角布置一起(左右两列气缸中心线的夹角γ<180°),使两组汽缸形成一个夹角的平面,从侧面看汽缸呈V字形(通常的夹角为60°),故称V型发动机。与直列布局形式相比,V型发动机缩短了机体的长度和高度,而更低的安装位置可以便于设计师设计出风阻系数更低的车身,同时得益于汽缸对向布置,还可抵消一部分振动,使发动机运转更为平顺。比如一些追求舒适平顺驾乘感受的中高级车型,还是在坚持使用大排量V型布局发动机,而不使用技术更先进的“小排量直列型布局发动机+增压器”的动力组合。
MCS 12L39-RSOBO
MCA 13I34-RSOBO
MCA 13I41-RS0B0
MCA 14L20-RV080
MCA 14L35-RSOP5
MCA 14L16-RS0B0
MCA 14L41-RS0B0
MCS 14H32-RS0P2
MCA 17N35-RS0B0
MCA 17N23-S20B0
MCA 17N17-RS0B0
MCA 17N41-SRSB0
MCA 19S17-RS0B0
MCA 19S35-RS0P2
MCA 19S23-RS0P1
MCA 19S42-T20BO
MCA 19S42-RS0B0
MCA 20X29H-RS0B0
MCA 21X17-RS0B0
MCA 21X35-RS0B0
MCA 22P17-RS0F2
GSS04-2N VAR 5C
GSS05-2M HAR100C12
GSS04-2M HAK090C12
GSS04-2M HBR080C32
GSS04-2M VBR063C12
GSS04-2M HAR071C32
GSS04-2M HBR063C32
GSS06-2M SAR100CL4
GSS04-2M HAR090C32
GSS04-2N-HAR1D
GSS05-2M HAR080C42
GSS05-2M VAK080C32
GSS06-2M VAK 09032
GSS05-2M HBR080C32
GSS05-2M VAR071C32
GSS04-2E HBR063C12
GKS05-3S HAK071C13
GKS06-3S HAK
GSS05-2 N VAR
GST03-2M VCK063C42
GKS05-3MHAK071C42
GST06-2M VCK071C42
GST07-2AVCK17NC35
GKS05-3SVAR09HC41