机器视觉系统工作过程:1、工件定位检测器探测到物体已经运动至接近摄像系统的视野中心,向图像采集部分发送触发脉冲。2、图像采集部分按照事先设定的程序和延时,分别向摄像机和照明系统发出启动脉冲。3、摄像机停止目前的扫描,重新开始新的一帧扫描,或者摄像机在启动脉冲来到之前处于等待状态,启动脉冲到来后启动一帧扫描。4、摄像机开始新的一帧扫描之前打开曝光机构,曝光时间可以事先设定。5、另一个启动脉冲打开灯光照明,灯光的开启时间应该与摄像机的曝光时间匹配。6、摄像机曝光后,正式开始一帧图像的扫描和输出。7、图像采集部分接收模拟视频信号通过A/D将其数字化,或者是直接接收摄像机数字化后的数字视频数据。8、图像采集部分将数字图像存放在处理器或计算机的内存中。9、处理器对图像进行处理、分析、识别,获得测量结果或逻辑控制值。10、处理结果控制流水线的动作、进行定位、纠正运动的误差等。由于汽车的零部件结构日渐复杂,给汽车产品的零部件检测也带来了一定的困难。以前传统的汽车零部件检测方法是人工手动的方式,但是汽车零部件的结构复杂,人工检测会存在花费时间多、测量效率低、精度低、数据遗漏等问题,同时也不便于对数据的实时性监管。如今机器视觉应用于汽车零部件检测,工业相机搭配工业镜头和光源,有效地解决了人工检测的一系列问题,使得产品的检测具有速度快、精度高、性高等特点。以下是汽车零部件检测案例:产品:汽车零部件视野:145*100mm检测目标:针脚有歪,零件上的圆孔测量机器视觉配置:使用2/3500W相机;工业镜头;光源: 面光拍摄结果:效果成像清晰。在机器视觉系统中,获得一张量的可处理的图像是至关重要。系统之所以成功,首先要图像质量好,特征明显。一个机器视觉项目之所以失败,大部分情况是由于图像质量不好,特征不明显引起的。要好的图像,必须要选择一个合适的光源。光源选型基本要素:对比度:对比度对机器视觉来说非常重要。机器视觉应用的照明的重要的任务就是使需要被观察的特征与需要被忽略的图像特征之间产生zui大的对比度,从而易于特征的区分。对比度定义为在特征与其周围的区域之间有足够的灰度量区别。好的照明应该能够需要检测的特征突出于其他背景。亮度:当选择两种光源的时候,zui佳的选择是选择更亮的那个。当光源不够亮时,可能有三种不好的情况会出现。一,相机的信噪比不够;由于光源的亮度不够,图像的对比度必然不够,在图像上出现噪声的可能性也随即增大。其次,光源的亮度不够,必然要加大光圈,从而减小了景深。另外,当光源的亮度不够的时候,自然光等随机光对系统的影响会zui大。鲁棒性:另一个测试好光源的方法是看光源对部件的位置敏感度zui小。当光源放置在摄像头视野的不同区域或不同角度时,结果图像应该不会随之变化。方向性很强的光源,增大了对高亮区域的镜面反射发生的可能性,这不利于后面的特征提取。好的光源需要能够使你需要寻找的特征非常明显,除了是摄像头能够拍摄到部件外,好的光源应该能够产生zui大的对比度、亮度足够且对部件的位置变化不敏感。光源选择好了,剩下来的工作就容易多了。具体的光源选取方法还在于试验的实践经验。