铁炭填料组合工艺(铁炭填料罐体)
铁炭填料组合工艺(铁炭填料罐体)
潍坊普茵沃润环保科技有限公司生产铁炭填料//铁炭填料(规整型),应用于难降解有机废水处理,我公司铁炭填料烧结工艺,实现了真正的高温无氧烧结,不板结、硬度大,成本低、损耗低!
铁炭填料影响因素及设计参数:影响微电解工艺处理废水效果的因素有许多,如pH值、停留时间、处理负荷、铁碳比、通气量等。这些因素的变化都会影响工艺的效果,有些可能还会影响到反应的机理。 pH值通常pH值是一个比较关键的因素,它直接影响了铁碳微电解填料对废水的处理效果,而且在pH值范围不同时,其反应的机理及产物的形式都大不相同。一般低pH值时,因有大量的H+,而会使反应快速地进行,但也不是pH值越低越好,因为pH值的降低会改变产物的存在形式,如破坏反应后生成的絮体,而产生有色的Fe2+使处理效果变差。因此,一般控制在pH值为偏酸性条件下,当然这也因根据实际废水性质而改变。 停留时间停留时间也是工艺设计的一个主要影响因素,停留时间的长短决定了氧化还原等作用时间的长短。停留时间越长,氧化还原等作用也进行得越彻底,但由于停留时间过长,会使铁的消耗量增加,从而使溶出的Fe2+大量增加,并氧化成为Fe3+,造成色度的增加及后续处理的种种问题。所以停留时间并非越长越好,而且对各种不同的废水,因其成分不同,其停留时间也不一样。停留时间还取决于进水的初始pH值,进水的初始pH值低时,则停留时间可以相对取得短一点;相反,进水的初始pH值高时,停留时间也应相对的长一点。
通气量对铁屑进行曝气利于氧化某些物质,如三价砷等,且可以增加出水的絮凝效果,但曝气量过大也影响水与铁屑的接触时间,使去除率降低。在中性条件下,通过曝气,一方面提供更充足的氧气,促进阳极反应的进行。另一方面也起到搅拌、振荡的作用,减弱浓差极化,加速电极反应的进行,并且通过向体系加入催化剂改进阴极的电极性能,提高其电化学活性来促进电极反应的进行,已取得了效果。 温度温度的升高可使还原反应加快,但是加快较大的是反应初期,且由于维持一定的温度需要保温等措拖,一般的工业应用不予以考虑,均在常温下进行反应。
【铁炭填料组合工艺//水处理基本原理】 (1) 电极反应 铁炭微电解是基于电化学中的原电池反应。当铁和炭浸入电解质溶液中时,由于Fe和C之间存在1.2V的电极电位差,因而会形成无数的原电池系统,在其作用空间构成一个电场。 铁炭原电池反应: 阳极:Fe - 2e → Fe2 E (Fe/Fe2 ) = 0.44V 阴极:2H 2e → H2 E (H /H2) = 0.00V 当有氧存在时,阴极反应如下: O2 4H 4e → 2H2O E (O2) = 1.23V O2 2H2O 4e → 4OH- E (O2/OH-) = 0.41V 一般微电解反应为:铁原子与炭原子是紧挨着或分开而形成原电池反应。这种铁炭接触不利于电子的转移,电荷效率较低,因此废水中有机物的去除效率一般也较低。同时当铁炭一旦分层将更不利于有机物的去除。 架构而形成的原电池反应:这种铁炭接触不存在铁与炭的分层问题,因此更有利于电子的转移,电荷效率较高,废水中有机物的去除效率也较高。 (2) 氧化还原反应 铁的还原作用 铁是活泼金属,在酸性条件下可使一些重金属离子和有机物还原为还原态,例如:(1)将汞离子还原为单质汞:(2)将六价铬还原为三价铬:(3)将偶氮型染料的发色基还原:(4)将硝基还原为胺基: 铁的还原作用使废水中重金属离子转变为单质或沉淀物而被除去,使一些大分子染料降解为小分子无色物质,具有脱色作用,同时提高了废水的可生化性。 氢的氧化还原作用 电极反应中得到的新生态氢具有较大的活性。能与废水中许多组分发生氧化还原作用,破坏发色、助色基团的结构,使偶氮键破裂、大分子分解为小分子、硝基化台物还原为胺基化合物,达到脱色的目的。一般地,[H]是在Fe2+的共同作用下将偶氮键打断、将硝基还原为胺基。 电化学附集 当铁与碳化铁或其他杂质之间形成一个小的原电池,将在其周围产生一个电场,许多废水中存在着稳定的胶体如印染废水,当这些胶体处于电场下时将产生电泳作用而被附集。在电场的作用下,胶体粒子的电泳速度可由下式求出:式中: V——胶体粒子的电泳速度(cm/s) ——电位(V) D——分散介质的介电常数 E——电场强度(V/cm) ——分散介质的粘度(Pa•S) K——系数从理论上计算20s就可完成电泳沉积过程。 物理吸附 在弱酸性溶液中,填料丰富的比表面积显出较高的表面活性,能吸附多种金属离子,能促进金属的去除。 【铁碳微电解基本原理】 (1) 电极反应 铁炭微电解是基于电化学中的原电池反应。当铁和炭浸入电解质溶液中时,由于Fe和C之间存在1.2V的电极电位差,因而会形成无数的原电池系统,在其作用空间构成一个电场。 铁炭原电池反应: 阳极:Fe - 2e → Fe2 E (Fe/Fe2 ) = 0.44V 阴极:2H 2e → H2 E (H /H2) = 0.00V 当有氧存在时,阴极反应如下: O2 4H 4e → 2H2O E (O2) = 1.23V O2 2H2O 4e → 4OH- E (O2/OH-) = 0.41V 一般微电解反应为:铁原子与炭原子是紧挨着或分开而形成原电池反应。这种铁炭接触不利于电子的转移,电荷效率较低,因此废水中有机物的去除效率一般也较低。同时当铁炭一旦分层将更不利于有机物的去除。 架构而形成的原电池反应:这种铁炭接触不存在铁与炭的分层问题,因此更有利于电子的转移,电荷效率较高,废水中有机物的去除效率也较高。 (2) 氧化还原反应 铁的还原作用 铁是活泼金属,在酸性条件下可使一些重金属离子和有机物还原为还原态,例如:(1)将汞离子还原为单质汞:(2)将六价铬还原为三价铬:(3)将偶氮型染料的发色基还原:(4)将硝基还原为胺基: 铁的还原作用使废水中重金属离子转变为单质或沉淀物而被除去,使一些大分子染料降解为小分子无色物质,具有脱色作用,同时提高了废水的可生化性。 氢的氧化还原作用 电极反应中得到的新生态氢具有较大的活性。能与废水中许多组分发生氧化还原作用,破坏发色、助色基团的结构,使偶氮键破裂、大分子分解为小分子、硝基化台物还原为胺基化合物,达到脱色的目的。一般地,[H]是在Fe2+的共同作用下将偶氮键打断、将硝基还原为胺基。